The K-functional and Calderón-Zygmund Type Decompositions

Natan Kruglyak

ABSTRACT. The paper is an exposition of some old results on the stability of the K-method and recent results on calculation of the K-functional.

1. Introduction

Since the publication of the classical paper by J.L. Lions and J. Peetre [LP], real interpolation theory has developed into a rich theory with applications to many different areas of analysis. In this paper we give a short introduction to the general K-method of interpolation and demonstrate its surprising stability.

A number of applications of interpolation theory, in particular some recent problems in image processing and singular integral operators, require the computation of suitable K-functionals, as well as precise algorithms for constructing nearly optimal minimizers. In this paper we will present an algorithm for constructing nearly optimal minimizers based on a generalization of the classical Calderón-Zygmund decompositions. Our algorithm also leads to new formulas for calculating suitable K-functionals. In particular, we will illustrate our algorithm on the model couple (L_1, Lip_{α}) .

2. Preliminaries

We start by briefly recalling the main notions of interpolation theory (see [**BL**]). Let X_0 and X_1 be two Banach spaces embedded in some topological vector space X. We will say that the spaces X_0 and X_1 form a Banach couple $\vec{X} = (X_0, X_1)$ if the following "compatibility" condition holds:

If the sequence y_n ∈ X₀ ∩ X₁, n = 1,... is such that it converges in the norm of X₀ to the element x₀ ∈ X₀ and in the norm of X₁ to the element x₁ ∈ X₁, then x₀ = x₁.

This condition allows us to introduce a Banach structure on the linear spaces $X_0 \cap X_1$ and $X_0 + X_1$, namely

$$\|x\|_{X_0\cap X_1} = \max(\|x\|_{X_0}, \|x\|_{X_0}), \quad \|x\|_{X_0+X_1} = \inf_{x=x_0+x_1}(\|x_0\|_{X_0} + t \, \|x_1\|_{X_1}).$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B70; Secondary 46M35.

 $Key\ words\ and\ phrases.$ $K\mbox{-functional},\ Calderón-Zygmund\ decomposition,\ Riesz-Thorin theorem.$

This paper is in final form and no version of it will be submitted for publication elsewhere.

Let $\vec{X} = (X_0, X_1), \vec{Y} = (Y_0, Y_1)$ be two Banach couples. A linear operator T from $X_0 + X_1$ to $Y_0 + Y_1$ is called a bounded linear operator from the couple \vec{X} to the couple \vec{Y} if the restrictions of T on X_i (i = 0, 1) are bounded linear operators from X_i to Y_i .

A Banach space $X \subset X_0 + X_1$ is called an intermediate space for the couple \vec{X} if the continuous embeddings $X_0 \cap X_1 \subset X \subset X_0 + X_1$ hold.

An intermediate space X is called an interpolation space if for any bounded linear operator T from the couple \vec{X} to itself the restriction of T on X is a bounded linear operator from X to X.

Let X be an intermediate space for the couple \vec{X} and let Y be an intermediate space for the couple \vec{Y} . We will say that the spaces X and Y are relative interpolation spaces if a restriction of any bounded linear operator T from the couple \vec{X} to the couple \vec{Y} is a bounded linear operator from X to Y.

3. The K-method of Interpolation: Introduction to a General Theory of K-spaces

The modern theory of real interpolation is based on the notion of the Kfunctional introduced by J. Peetre. Let us recall its definition.

Let $x \in X_0 + X_1$, then the K-functional of x is a nonnegative concave function on $\mathbb{R}_+ = (0, \infty)$ defined by the formula

$$K(t, x; \vec{X}) = \inf_{x=x_0+x_1} (\|x_0\|_{X_0} + t \, \|x_1\|_{X_1}), \qquad t > 0.$$

The K-functional can be obtained from a "distance function", the so-called E-functional :

$$E(t, x; \vec{X}) = \inf_{\|x_1\|_{X_1} \le t} \|x - x_1\|_{X_0}, \quad t > 0$$

REMARK 1. We deviate somewhat from the standard notation $E(t, x; \vec{X}) =$ $\inf_{\|x_0\|_{X_0} \le t} \|x - x_0\|_{X_1}.$

Clearly,

$$K(t, x; \vec{X}) = \inf_{s>0} (E(t, x; \vec{X}) + ts)$$

and conversely for any Banach couple \vec{X} we also have

$$E(s, x; \vec{X}) = \sup_{t>0} (K(t, x; \vec{X}) - ts).$$

One of the advantages of using the K-functional instead of the E-functional is that the K-functional possesses several very nice properties that the E-functional does not have.

Let us now list the main properties of the K-functional.

- For a fixed t > 0 the expression K(t, .; X) is a norm on the space X₀ + X₁.
 For the couple X^T = (X₁, X₀) we have K(t, x; X^T) = tK(t⁻¹, x; X).

The proofs of these properties are simple and direct.

Much less trivial is the following K-divisibility property (see $[\mathbf{BK}]$, pp. 315-337).

• Let

$$K(\cdot, x; \vec{X}) \le \sum_{i=1}^{\infty} \varphi_i, \qquad \sum_{i=1}^{\infty} \varphi_i(1) < \infty,$$

where φ_i (i = 1, ...) are nonnegative concave functions on \mathbb{R}_+ . Then there exists a decomposition $x = \sum_{i=1}^{\infty} x_i$ such that

(3.1)
$$K(\cdot, x_i; \vec{X}) \le \gamma \varphi_i, \qquad i = 1, \dots,$$

where γ is an absolute constant.

REMARK 2. It is known (see [**BK**] and [**CJM**]) that $1.5 < \gamma < 6$.

The importance of the K-functional for interpolation arises from the following simple proposition.

PROPOSITION 1. Let T be a linear bounded operator from the couple $\vec{X} = (X_0, X_1)$ to the couple $\vec{Y} = (Y_0, Y_1)$. Then we have the estimate

$$K(t, Tx; \vec{Y}) \leq \inf_{x=x_0+x_1} (\|Tx_0\|_{Y_0} + t \|Tx_1\|_{Y_1}) \leq \max_{i=0,1} \|T\|_{X_i \to Y_i} K(t, x; \vec{X}).$$

On the basis of the K-functional we can construct interpolation spaces (K-spaces). A Banach space Φ of measurable functions on \mathbb{R}_+ is called a *parameter* of the K-method if it satisfies the following two properties:

- if $f \in \Phi$ and $|g| \leq |f|$ then $g \in \Phi$ and $||g||_{\Phi} \leq ||g||_{\Phi}$;
- $\min(1,t) \in \Phi$.

The last condition means that Φ contains at least one nonnegative concave function. Then the space $K_{\Phi}(\vec{X})$ is defined as the set of elements $x \in X_0 + X_1$ such that

$$\left\|x\right\|_{K_{\Phi}(\vec{X})} = \left\|K(\cdot, x; \vec{X})\right\|_{\Phi}.$$

It is possible to verify that $K_{\Phi}(\vec{X})$ is an intermediate space for the couple \vec{X} . Moreover, from Proposition 1 we immediately obtain

THEOREM 1. (On interpolation) Let T be a bounded linear operator from the couple $\vec{X} = (X_0, X_1)$ to the couple $\vec{Y} = (Y_0, Y_1)$. Then T is a bounded linear operator from the space $K_{\Phi}(\vec{X})$ to the space $K_{\Phi}(\vec{Y})$.

REMARK 3. As we have seen, the interpolation theorem follows directly from the definitions. This triviality is "compensated" by the difficulty of calculation of spaces $K_{\Phi}(\vec{X})$ for concrete couples \vec{X} .

For some couples all interpolation spaces are K-spaces and so they can be parameterized by the parameters of the K-method. An important example of such couples is presented in the following theorem.

THEOREM 2. Let $\vec{X} = (L_{p_0}(\omega_0), L_{p_1}(\omega_1))$ be a couple of weighted Lebesque spaces. Then all interpolation spaces of \vec{X} are K-spaces.

The proof of the theorem follows from the result of G. Sparr which states that the couple $(L_{p_0}(\omega_0), L_{p_1}(\omega_1))$ is a Calderón couple and Lemma 4.1.12 from **[BK]**. Recall that the couple $\vec{X} = (X_0, X_1)$ is called a Calderón couple if from the inequality $K(\cdot, x; \vec{X}) \ge K(\cdot, y; \vec{X})$ it follows that there exists a bounded linear operator $T: \vec{X} \to \vec{X}$ such that Tx = y.

3.1. Stability of *K***-spaces.** Now we are ready to formulate the main results of the general theory: reiteration and duality.

To formulate the reiteration theorem first note that different parameters Φ of the K-method can lead to the same space $K_{\Phi}(\vec{X})$. This happens because the Kfunctional is a nonnegative concave function and therefore only the restriction of the norm of Φ on the cone of nonnegative concave functions on \mathbb{R}_+ is important. For example, if we consider a parameter $\hat{\Phi}$ of the K-method defined by the norm

$$\|f\|_{\hat{\Phi}} = \left\|\hat{f}\right\|_{\Phi}.$$

where by \hat{f} we denote the least concave majorant of the function |f|, then we have $K_{\Phi}(\vec{X}) = K_{\hat{\Phi}}(\vec{X})$ for all couples \vec{X} even with the equality of the norms.

The question that is answered in the reiteration theorem is the following.

PROBLEM 1. Let \vec{X} be a Banach couple. Suppose that the spaces Y_0 , Y_1 are obtained by the K-method from a couple \vec{X} , i.e. $Y_i = K_{\Phi_i}(\vec{X})$ (i = 0, 1). How can we calculate the space $K_{\Phi}(\vec{Y})$?

Surprisingly, the resulting space is again the K-space of the initial couple X and a formula for its parameter can be given.

THEOREM 3. (On reiteration) Let Φ , Φ_0 , Φ_1 be parameters of the K-method. Then the following formula is correct:

(3.2)
$$K_{\Phi}(K_{\Phi_0}(\vec{X}), K_{\Phi_1}(\vec{X})) = K_{\Psi}(\vec{X}),$$

where $\Psi = K_{\Phi}(\hat{\Phi}_0, \hat{\Phi}_1)$. The equality of spaces in (3.2) means that they coincide and their norms are equivalent with the constants of equivalence independent of \vec{X} .

The proof of the reiteration theorem follows quite easily from the K-divisibility (see [**BK**], Theorem 3.3.11).

Let us now turn to the duality. Let a couple $\vec{X} = (X_0, X_1)$ be regular, i.e. the Banach space $X_0 \cap X_1$ is dense in X_0 and in X_1 . For a regular couple the dual spaces X'_0, X'_1 are embedded in the space $(X_0 \cap X_1)'$ and form a Banach couple (see [**BL**]). Moreover, if X is an intermediate space for the couple \vec{X} , then we can define its dual space $X' \subset (X_0 \cap X_1)'$ as a dual of the space X^0 , where by X^0 we denote the closure of the set $X_0 \cap X_1$ in X.

The problem of duality can be formulated as follows.

PROBLEM 2. Suppose that a couple \vec{X} is regular. How can we calculate the dual space to $K_{\Phi}(\vec{X})$?

Of course, it is natural to expect that the dual of a K-space is again a K-space for the dual couple $\vec{X'} = (X'_0, X'_1)$. Unfortunately, this is not correct: the dual to the space $K_{\Phi}(\vec{X})$ does not have to be an interpolation space for the couple $\vec{X'}$, as can be seen from the proof of Theorem 2.4.17 in [**BK**]. Nevertheless, the expectation is met if we impose some mild conditions on \vec{X} or on the parameter Φ .

DEFINITION 1. A parameter Φ of the K-method is called nondegenerate if Φ contains at least one nonnegative concave function f such that

$$\lim_{t \to 0} \frac{f(t)}{t} = \lim_{t \to \infty} f(t) = \infty.$$

DEFINITION 2. A couple \vec{X} is called relatively complete if the unit ball of the space $X_0 \cap X_1$ is a closed subset of the space $X_0 + X_1$.

To formulate the duality result we will need to consider the Calderón operator

$$(Sf)(t) = \int_0^t f(s)\frac{ds}{s} + t \int_t^\infty f(s)\frac{ds}{s^2},$$

The operator S is defined on the functions f on \mathbb{R}_+ that belong to the space $L_1(\omega)$, $\omega = \min(\frac{1}{s}, \frac{1}{s^2})$, so the integrals in the definition of S converge absolutely.

Next theorem follows from Theorem 3.5.9, Theorem 3.7.2, and Proposition 3.1.17 from [**BK**].

THEOREM 4. (On duality) Let \vec{X} be a regular couple. Suppose that one of the following conditions is satisfied:

a) the parameter Φ of the K-method is nondegenerate;

b) \vec{X} is a relatively complete couple.

Then the dual space to $K_{\Phi}(\vec{X})$ is a K-space for the dual couple and

$$K_{\Phi}(\vec{X})' = K_{\Psi}(\vec{X}')$$

where the norm in the parameter Ψ is given by the expression

$$||f||_{\Psi} = \sup\left\{\int_0^{\infty} f(t)g(\frac{1}{t})\frac{dt}{t} : ||Sg||_{\Phi} \le 1\right\}.$$

4. Calderón-Zygmund type decompositions and K-functional

To apply the theory we need to calculate K-functionals. This is usually a difficult problem and each solved case contains some nontrivial information.

Let us look at some examples.

EXAMPLE 1. Let us consider the couple (L_1, L_∞) . It is known that

(4.1)
$$K(t, f; L_1, L_\infty) \approx t(Mf)^*(t),$$

where

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f|$$

is a Hardy-Littlewood maximal function. Here and below the constants of equivalence are independent of f and t, and Q is a cube in \mathbb{R}^n with sides parallel to the coordinate axes. Since $L_p = (L_1, L_\infty)_{1-\frac{1}{n}, p}$, we have

$$\|f\|_{L_p} \approx \left(\int_0^\infty (t^{-(1-\frac{1}{p})} K(t, f; L_1, L_\infty))^p \frac{dt}{t}\right)^{\frac{1}{p}} = \left(\int_0^\infty ((Mf)^*(t))^p dt\right)^{\frac{1}{p}} = \left(\int_{\mathbb{R}^n} (Mf(x))^p dx\right)^{\frac{1}{p}} = \|Mf\|_{L_p}$$

and we can see that the formula (4.1) leads to the Hardy-Littlewood maximal theorem: $\|f\|_{L_p} \approx \|Mf\|_{L_p}$.

EXAMPLE 2. Let us consider the couple $(L_p, \dot{W}_p^k), p \in (1, \infty)$. It is known that

$$K(t, f; L_p, \dot{W}_p^k) \approx \omega_k(f, t^{\frac{1}{k}})_p$$

where $\omega_k(f,t)_p$ is the k-th modulus of continuity in L_p . From this formula and the closedness of the unit ball \dot{W}_p^k in L_p for $p \in (1,\infty)$ follows the description of the Sobolev space \dot{W}_p^k in terms of the modulus of continuity

$$||f||_{\dot{W}_{p}^{k}} \approx \sup_{t>0} \frac{1}{t} K(t, f; L_{p}, \dot{W}_{p}^{k}) \approx \sup_{t>0} \frac{1}{t} \omega_{k}(f, t^{\frac{1}{k}})_{p}.$$

For some problems it is important to have an algorithm for constructing a family of elements $u_t \in X_1$ such that

$$K(t, x; X_0, X_1) \approx \|x - u_t\|_{X_0} + t \|u_t\|_{X_1},$$

with the constants of equivalence independent of x and t. We will call such decompositions *near minimizers* for the K-functional. For some couples it is easier to construct near minimizers for the E-functional, i.e. such a family of elements $u_t \in X_1$ that

$$||u_t||_{X_1} \le ct$$
 and $||x - u_t||_{X_0} \le cE(\frac{t}{c}, x; X_0, X_1),$

with $c \ge 1$ independent of x and t > 0. Note that if we take $t = 2c \frac{K(s,x;X_0,X_1)}{s}$ then it is not difficult to show that u_t will be a near minimizer for the K-functional at the point s.

An important example of a problem for which we need to find a near minimizer comes from image processing. In the paper [**ROF**] L. Rudin et al. proposed to reconstruct the geometrical properties of an object from its noisy image by means of calculating the function u_t which minimizes the *L*-functional

$$L(t, f; L_2, BV) = \inf_{u \in BV} (\|f - u\|_{L_2}^2 + t \|u\|_{BV}),$$

where all functions are defined on a rectangle in \mathbb{R}^2 and BV is a space of functions of bounded variations defined by the seminorm

$$||f||_{BV} = \sup_{t>0} \frac{1}{t} \omega_1(f, t)_1.$$

Recently this approach to denoising has become quite popular, see, for example, $[\mathbf{TNV}]$ and the book $[\mathbf{M}]$.

Note that for $s = tK(t, f; L_2, BV)$ we have

$$L(s, f; L_2, BV) \approx K(t, f; L_2, BV)^2$$

(see $[\mathbf{BK}]$, p. 520). Therefore instead of the *L*-functional it is possible to consider the *K*-functional

$$K(t, f; L_2, BV) = \inf_{u \in BV} (\|f - u\|_{L_2} + t \|u\|_{BV})$$

and it is sufficient to solve the problem of constructing minimizers for the K-functional. A wavelet-based approach to this problem was considered in several papers, see [**CDPH**], [**CDDD**], and [**BDKPW**].

Let us formulate the result for the multivariate Haar system \mathcal{H}_i $(i \in \Delta)$ normalized in the space BV, i.e. $\|\mathcal{H}_i\|_{BV} = 1$ for all *i*. We let

$$G_N(f) = \sum_{i \in \Delta_N} c_i \mathcal{H}_i, \quad f = \sum_i c_i \mathcal{H},$$

where Δ_N is a subset of N elements of Δ that correspond to the coefficients c_i with the largest absolute values. Then we have

THEOREM 5. (see [**BDKPW**]) Let $p_* = \frac{n}{n-1}$, where $n \ge 2$ is a dimension. Then

$$K(N^{-\frac{1}{n}}, f; L_{p_*}, BV) \approx ||f - G_N(f)||_{L_{p_*}} + N^{-\frac{1}{n}} ||G_N(f)||_{BV}.$$

So we see that a near minimizer for the couple (L_{p_*}, BV) can be constructed using a greedy wavelet algorithm.

Below we will suggest another general approach to the problem of constructing near minimizers and calculating the K-functional. Our approach is based on a generalization of classical Calderón-Zygmund decompositions. These decompositions were used recently to solve some problems in the theory of singular integral operators, see $[\mathbf{KK}]$, $[\mathbf{KiKr}]$ and $[\mathbf{KiKr1}]$.

4.1. Classical Calderón-Zygmund Decompositions and Near Minimizers. In their classical paper [CZ], A. Calderón and A. Zygmund suggested a simple construction that proved to be a very powerful and useful tool in harmonic analysis. The decomposition is constructed as follows.

Let $f \in L_1$ and t > 0 be fixed. Then using stopping time technique it is possible to construct a family of dyadic cubes $\{Q_i\}_{i \in I}$ with nonoverlapping interiors such that

$$t \le \frac{1}{|Q_i|} \int_{Q_i} |f| \le 2^n t, \quad i \in I$$

and

$$\left\| f\chi_{\mathbb{R}^n \setminus \cup Q_i} \right\|_{L_{\infty}} \le t.$$

Then the Calderón-Zygmund decomposition is defined as

$$f = f_t + (f - f_t)$$

where the so-called "good" function f_t is given by the formula

$$f_t = \sum_i c_i \chi_{Q_i} + f \chi_{\mathbb{R}^n \setminus \cup Q_i}, \quad c_i = \frac{1}{|Q_i|} \int_{Q_i} f \ , \ i \in I.$$

Clearly, $||f_t||_{L_{\infty}} \leq 2^n t$. More interestingly, the function f_t is a near minimizer for the E-functional

$$||f - f_t||_{L_1} \le 4E(\frac{t}{2}, f; L_1, L_\infty).$$

Indeed,

$$\|f - f_t\|_{L_1} \le \sum_i \int_{Q_i} |f - f_{Q_i}| \le 2\sum_i \int_{Q_i} |f| \le 2t \sum_i |Q_i|$$

and it only remains to note that

$$(4.2) \qquad E(\frac{t}{2}, f; L_1, L_\infty) = \inf_{\|g\|_{L_\infty} \le \frac{t}{2}} \|f - g\|_{L_1} \ge \inf_{\|g\|_{L_\infty} \le \frac{t}{2}} \left(\sum_i \int_{Q_i} |f - g| \right) \ge \\ \inf_{\|g\|_{L_\infty} \le \frac{t}{2}} \left(\sum_i (\int_{Q_i} |f| - \int_{Q_i} |g|) \right) \ge \sum_i (t |Q_i| - \frac{t}{2} |Q_i|) \ge \frac{t}{2} \sum_i |Q_i|.$$

This simple observation suggests that an extension of the Calderón-Zygmund construction for couples different from (L_1, L_∞) could be useful for constructing near minimizers.

4.2. A Generalization of the Calderón-Zygmund Construction. To avoid technicalities we will only consider here the model case (L_1, Lip_α) , where the space Lip_α is defined by the seminorm

$$||f||_{Lip_{\alpha}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

The exposition below follows $[\mathbf{Kr}]$. Our algorithm will provide a method to construct near minimizers for the *E*-functional of the couple (L_1, Lip_{α}) .

Let us fix $f \in L_1$ and t > 0. Constructing the "good" function $f_t \in Lip_{\alpha}$ is done in three steps.

4.2.1. Step 1. Limiting cubes. In this step we use a stopping time technique to construct a family of cubes that possesses two important properties.

For $x \in \mathbb{R}^n$ let us consider a function

$$\varphi_x(r) = \frac{1}{|Q(x,r)|^{1+\frac{\alpha}{n}}} \inf_c \int_{Q(x,r)} |f-c|,$$

where Q(x,r) is a cube in \mathbb{R}^n with its center in x and side lengths equal to r.

Let us then consider a set

$$\Omega = \left\{ x \in \mathbb{R}^n : \sup_r \varphi_x(r) > t \right\}.$$

As $\varphi_x(r) \to 0$ when $r \to \infty$, therefore for $x \in \Omega$ it is possible to find $r_x > 0$ such that

$$\sup_{r \ge r_x} \varphi_x(r) \le t \quad \text{and} \quad \sup_{r \ge \frac{1}{2}r_x} \varphi_x(r) > t.$$

In this case we let

$$Q_x = Q(x, r_x).$$

The resulting family $\{Q_x\}_{x\in\Omega}$ possesses the following important property, similar to (4.2).

PROPOSITION 2. Let $\pi = \{Q_{x_i}\}$ be a subfamily of $\{Q_x\}_{x \in \Omega}$ which consists of cubes with non-overlapping interiors, i.e. $\hat{Q}_{x_i} \cap \hat{Q}_{x_j} = \emptyset$, $i \neq j$. Then

$$\sum_{i} |Q_{x_i}|^{1+\frac{\alpha}{n}} \le c\frac{1}{t}E(\frac{t}{c}, f; L_1, Lip_\alpha)$$

where the constant $c \geq 1$ is independent of f, t and π .

To construct the cubes Q_x , for $x \in \mathbb{R}^n \setminus \Omega$, let us split \mathbb{R}^n into cubes Q_i , $i = 1, 2, \dots$ with volumes equal to 1, and for $x \in \Omega \cap Q_i$ let us take

$$Q_x = Q(x, \varepsilon^i),$$

were $\varepsilon > 0$ is a sufficiently small number. If $\pi = \{Q_{x_i}\}$ is a subfamily of the constructed family $\{Q_x\}_{\mathbb{R}^n \setminus \Omega}$ consisting of cubes with disjoint interiors, then not more than $\frac{1}{\varepsilon^{in}}$ cubes from π have their centers in the cube Q_i . Therefore

$$\sum_{i} |Q_{x_i}|^{1+\frac{\alpha}{n}} \le c \sum_{i=1}^{\infty} \varepsilon^{i(n+\alpha)} \left(\frac{1}{\varepsilon^{in}}\right) \le c \varepsilon^{\alpha}$$

and we can see that if $\varepsilon > 0$ is small enough then the whole family $\{Q_x\}_{x \in \mathbb{R}^n}$ possesses the following property.

Property 1. Let

(4.3)
$$\left| \{Q_x\}_{x \in \mathbb{R}^n} \right|_{1+\frac{\alpha}{n}} = \sup_{\pi = \{Q_{x_i}\}} (\sum_i |Q_{x_i}|^{1+\frac{\alpha}{n}}),$$

where π consists of cubes with disjoint interiors and sup is taken over all subfamilies $\pi = \{Q_{x_i}\}$ of the family $\{Q_x\}_{x \in \mathbb{R}^n}$. Then

$$\left| \{Q_x\}_{x \in \mathbb{R}^n} \right|_{1+\frac{\alpha}{n}} \le c \frac{1}{t} E(\frac{t}{c}, f; L_1, Lip_\alpha),$$

where the constant $c \ge 1$ independent of $f \in L_1$ and t > 0.

Moreover, from the construction of the cubes Q_x we have

Property 2. If a cube Q is not strictly embedded in some cube Q_x then

$$\frac{1}{|Q|^{1+\frac{\alpha}{n}}} \inf_{c} \int_{Q} |f-c| \le t$$

4.2.2. Step2. A Covering Theorem. To formulate the theorem we will need the following definition.

DEFINITION 3. The family of cubes $\{K_i\}_{i \in I}$ forms a Whitney-Besicovitch covering (WB-covering for short) if the following three properties hold:

•
$$\sum_{i} \chi_{K_i} \leq M(n);$$

•
$$\cup_i \frac{1}{2} K_i = \cup_i K_i;$$

• if $K_i \cap K_j \neq \emptyset$, then $|K_i \cap K_j| \ge \varepsilon(n) \max(|K_i|, |K_j|)$, where $M(n), \varepsilon(n)$ are some positive constants depending only on the dimension n.

The main idea of the covering theorem is to construct a WB-covering by enlarging some of the limiting cubes and to keep the properties (1) and (2).

Let $\{Q_x\} = \{Q_x\}_{x \in \mathbb{R}^n}$ be a family of nondegenerate cubes (x is the center of Q_x).

THEOREM 6. Suppose that (see 4.3) $|\{Q_x\}|_{1+\frac{\alpha}{\pi}} < \infty$ and $\alpha > 0$. Then it is possible to construct a family of cubes $\{K_i\}_{i \in I}$ that forms a WB-covering and possesses the following properties:

- if x_i is the center of K_i then Q_{xi} ⊂ K_i, i ∈ I;
 for any cube Q_x there exists i = i(x) such that Q_x ⊂ K_i;
 ∑_{i∈I} |K_i|^{1+α/n} ≤ c(n) |{Q_x}_{x∈ℝⁿ}|_{1+α/n}.

REMARK 4. The theorem follows from the proof of the covering theorem in [Kr1].

Applying the covering theorem to the family of limiting cubes gives us a family of cubes $\{K_i\}_{i \in I}$ that satisfies three geometrical properties:

- $\cup_i \frac{1}{2} K_i = \mathbb{R}^n;$

• $\sum_{i}^{2} \chi_{K_{i}} \leq M(n);$ • if $K_{i} \cap K_{j} \neq \emptyset$, then $|K_{i} \cap K_{j}| \geq \varepsilon(n) \max(|K_{i}|, |K_{j}|);$

and two analytical properties:

- ∑_i |K_i|^{1+ α/n} ≤ c(n) ¹/_t E(^t/_{c(n)}, f; L₁, Lip_α);
 if a cube Q is not strictly embedded in some cube K_i, i ∈ I, then

$$\frac{1}{|Q|^{1+\frac{\alpha}{n}}} \inf_{c} \int_{Q} |f-c| \le t.$$

4.2.3. Construction of a Minimizer for the Couple (L_1, Lip_{α}) .

DEFINITION 4. A family of C^{∞} functions $\{\psi_i\}$ will be called a partition of the unity corresponding to the WB-covering $\{K_i\}$ if

i) $0 \le \psi_i \le 1$, $\sum_i \psi_i = \chi_{\cup_i K_i}$; ii) $\psi_i = 0$ outside the cube $\binom{2}{3}K_i$ and $\psi_i \ge c > 0$ on $\frac{1}{2}K_i$ with the constant cdepending only on the dimension n;

iii) the following estimate holds for the functions ψ_i :

$$\left| D^{\bar{k}} \psi_i \right| \le \gamma(n, \bar{k}) \frac{1}{|K_i|^{\frac{|\bar{k}|}{n}}}, \qquad D^{\bar{k}} = \frac{\partial^{\bar{k}}}{\partial x_1^{k_1} \dots \partial x_n^{k_n}}.$$

The construction of such partition of the unity is standard, see, for example, $[\mathbf{S}].$

Let us consider a partition of the unity $\{\psi_i\}$ that corresponds to the WBcovering $\{K_i\}$ constructed from the family of limiting cubes. Then the "good" function f_t can be defined by the formula

$$f_t = \sum_i c_i \psi_i, \quad c_i = \frac{1}{\int \psi_i} \int f \psi_i.$$

Now we can formulate the result (see $[\mathbf{Kr}]$).

THEOREM 7. The function f_t is a minimizer for the E-functional for the couple $(L_1, Lip_\alpha).$

REMARK 5. The formula for the "good" function f_t is similar to the one in the paper of C. Fefferman and E. Stein [FS]. The main difference is the absence of the term $f\chi_{\mathbb{R}^n \setminus \bigcup K_i}$. The reason for that is that in our case $\bigcup K_i = \mathbb{R}^n$.

REMARK 6. The above construction can be generalized in several directions (see [Kr1], [KrKu]). For example, its generalization works for the couple (L_q, W_n^k) under the condition

$$\frac{k}{n} + \frac{1}{q} - \frac{1}{p} > 0,$$

and for the couple $(L_1, \mathcal{L}^{1,\lambda})$, where $\mathcal{L}^{1,\lambda}$ is a Morrey space constructed on the base of L_1 . Recall that the norm in $\mathcal{L}^{1,\lambda}$ is given by the expression

(4.4)
$$||f||_{\mathcal{L}^{1,\lambda}} = \sup_{Q} \frac{1}{|Q|^{1-\frac{\lambda}{n}}} \int_{Q} |f|, \quad 1 - \frac{\lambda}{n} \in (0,1).$$

10

4.3. Calculation of the *K*-functional. Construction of minimizers usually gives some formula for the *K*-functional. Let us consider, for example, the couple $(L_1, \mathcal{L}^{1,\lambda})$ where $\mathcal{L}^{1,\lambda}$ is a Morrey space (see 4.4). Let $M_{\lambda}f$ be a fractional maximal function

$$M_{\lambda}f(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\lambda}{n}}} \int_{Q} |f|$$

To formulate the result we need the notion of the Hausdorff capacity. Let Ω be a set in \mathbb{R}^n , then the Hausdorff capacity of the set Ω can be defined as

$$\mu_{\lambda}(\Omega) = \inf_{\Omega \subset \cup Q_i} \sum |Q_i|^{1-\frac{\lambda}{n}}$$

where inf is taken over all the families of cubes $\{Q_i\}$ such that $\Omega \subset \cup Q_i$.

REMARK 7. Standard notation for Hausdorff capacity of the set Ω is $\Lambda_{n-1}^{(\infty)}(\Omega)$.

Although μ_{λ} is not a measure, it is still possible to define the decreasing rearrangement of the function f with respect to μ_{λ} , which we denote by $f_{\mu_{\lambda}}^*$. By the definition it is a nonincreasing, continuous from the right function on \mathbb{R}_+ such that

$$|s: f^*_{\mu_{\lambda}}(s) > t| = \mu_{\lambda}(\{x: |f(x)| > t\}.$$

Then the following formula is correct (see [KrKu1])

$$K(t, f; L_1, \mathcal{L}^{1,\lambda}) \approx t(M_\lambda f)^*_{\mu_\lambda}(t).$$

The last formula leads immedeately to an analog of Hardy-Littlewod maximal theorem for the fractional maximal operator $M_{\lambda}f$ (see the discussion in [**KrKu1**] and compare with Example 1):

$$\|f\|_{(L_1,\mathcal{L}^{1,\lambda})_{1-\frac{1}{p},p}} \approx \left(\int_0^\infty (t^{-(1-\frac{1}{p})} K(t,f;L_1,\mathcal{L}^{1,\lambda}))^p \frac{dt}{t}\right)^{\frac{1}{p}} = \left(\int_0^\infty ((M_\lambda f)^*_{\mu_\lambda}(t))^p dt\right)^{\frac{1}{p}} = \left(p \int_{\mathbb{R}^n} (\mu_\lambda \{x: M_\lambda f > t\}) t^{p-1} dt\right)^{\frac{1}{p}}.$$

References

- [BDKPW] P. Bechler, R. DeVore, A. Kamot, G. Petrova, P. Wojtaszczyk, Greedy Wavelet Projections are Bounded on BV, Transactions of AMS 359 (2007), 619-635.
- [BL] J. Bergh, J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976.
- [BK] Ju.A. Brudnyi, N. Kruglyak, Interpolation Functors and Interpolation Spaces 1, North Holland, Amsterdam, 1991.
- [CZ] A.P. Calderón, A. Zygmund, On the Existence of Certain Singular Integrals, Acta Math. 88 (1952), 85-139.
- [CDPH] A. Cohen, R. DeVore, P. Petrushev, H Xu, Nonlinear Approximation and the Space $BV(R^2)$, American Journal of Mathematics 121 (1999), 587-628.
- [CDDD] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic Analysis of the Space BV, Rev. Mat. Iberoamericana 19 (2003), 235-263.
- [CJM] M. Cwikel, B. Jawerth, M. Milman, On the fundamental lemma of interpolation theory, J. Approx. Th. 60 (1990), 70-82.
- [FS] C. Fefferman, E.M. Stein, H^p Spaces of Several Variables, Acta Math. 129 (1972), 137-193.
- [KK] S. Kislyakov, N. Kruglyak, Stability of Approximation Under the Action of Singular Integral Operators, Functional Analysis and its Applications 40 (2006), no 4, 285-297.
- [KiKr] S. Kislyakov, N. Kruglyak, Stability of Approximation under Singular Integral Operators and Calderón-Zygmund Type Decompositions II, preprint 1734 (2005), Erwin Schrödinger International Institute for Mathematical Physics, Vienna.

- [KiKr1] S. Kislyakov, N. Kruglyak, Stability of Approximation under Singular Integral Operators and Calderón-Zygmund Type Decompositions, preprint 07 (2005), St.-Petersburg Steklov Mathematical Institute.
- [Kr] N. Kruglyak, Investigations on the Real Interpolation Method, Doctor of Science Thesis, Steklov Institute of Mathematics, St.-Petersburg Division, 1996.
- [Kr1] N. Kruglyak, Smooth Analogs of Calderon-Zygmund Decompositions, Quantitative Covering Theorems and the K-functional (Russian), Algebra i Analiz 8 (1996), no. 4, 110-160, English translation in St.-Petersburg Math. Journal 8 (1997), no. 4, 617-649.
- [KrKu] N. Kruglyak, E. Kuznetsov, Smooth and Nonsmooth Calderón-Zygmund Decompositions for Morrey Spaces, J. Fourier Analysis and Applications 11 (2005), no. 6, 697-714.
- [KrKu1] N. Kruglyak, E. Kuznetsov, Sharp Integral Estimates for the Fractional Maximal Function and Interpolation, Arkiv för Matematik 44 (2006), no. 2, 309-326.
- [LP] J.L. Lions, J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci., 19 (1964), 5-68.
- [M] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series vol. 22, AMS, Providence, 2001.
- [ROF] L. Rudin, S. Osher, C. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms, Physica D, vol. 60, 259–268, 1992.
- [S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
- [TNV] E. Tadmor, S. Nezzar, L. Vese, A Multiscale Image Representation Using Hierarchical (BV, L₂) Decompositions, Multiscale Model. Simul. 2 (2004), no. 4, 554-573.

DEP. OF MATHEMATICS, LULEÅ UNIVERSITY OF TECHNOLOGY *E-mail address*: natan@ltu.se *URL*: http://www.math.ltu.se/~natan

12